Aliases: C62⋊3C6, C3⋊S3⋊A4, C32⋊(C2×A4), (C3×A4)⋊2S3, C3.3(S3×A4), C32⋊A4⋊3C2, C22⋊2(C32⋊C6), (C2×C6).7(C3×S3), (C22×C3⋊S3)⋊1C3, SmallGroup(216,99)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C62 — C32⋊A4 — C62⋊C6 |
C62 — C62⋊C6 |
Generators and relations for C62⋊C6
G = < a,b,c | a6=b6=c6=1, ab=ba, cac-1=a-1b-1, cbc-1=a3b2 >
Subgroups: 402 in 56 conjugacy classes, 11 normal (all characteristic)
C1, C2, C3, C3, C22, C22, S3, C6, C23, C32, C32, A4, D6, C2×C6, C2×C6, C3×S3, C3⋊S3, C3⋊S3, C3×C6, C2×A4, C22×S3, He3, C3×A4, C3×A4, C2×C3⋊S3, C62, C32⋊C6, S3×A4, C22×C3⋊S3, C32⋊A4, C62⋊C6
Quotients: C1, C2, C3, S3, C6, A4, C3×S3, C2×A4, C32⋊C6, S3×A4, C62⋊C6
Character table of C62⋊C6
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 6A | 6B | 6C | 6D | 6E | 6F | |
size | 1 | 3 | 9 | 27 | 2 | 6 | 12 | 12 | 24 | 24 | 6 | 6 | 6 | 6 | 36 | 36 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | linear of order 6 |
ρ7 | 2 | 2 | 0 | 0 | 2 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 0 | 2 | -1 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | 2 | -1 | -1 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ9 | 2 | 2 | 0 | 0 | 2 | -1 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | 2 | -1 | -1 | -1 | 0 | 0 | complex lifted from C3×S3 |
ρ10 | 3 | -1 | -3 | 1 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ11 | 3 | -1 | 3 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from A4 |
ρ12 | 6 | -2 | 0 | 0 | 6 | -3 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from S3×A4 |
ρ13 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -2 | 4 | 0 | 0 | orthogonal faithful |
ρ14 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | -2 | -2 | 0 | 0 | orthogonal faithful |
ρ15 | 6 | 6 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C6 |
ρ16 | 6 | -2 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 4 | -2 | 0 | 0 | orthogonal faithful |
(1 2)(3 4)(5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)
(1 3 6)(2 4 5)(7 10 8 11 9 12)(13 14 15 16 17 18)
(1 14 12 6 18 10)(2 17 8 5 15 9)(3 16 11)(4 13 7)
G:=sub<Sym(18)| (1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18), (1,3,6)(2,4,5)(7,10,8,11,9,12)(13,14,15,16,17,18), (1,14,12,6,18,10)(2,17,8,5,15,9)(3,16,11)(4,13,7)>;
G:=Group( (1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18), (1,3,6)(2,4,5)(7,10,8,11,9,12)(13,14,15,16,17,18), (1,14,12,6,18,10)(2,17,8,5,15,9)(3,16,11)(4,13,7) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18)], [(1,3,6),(2,4,5),(7,10,8,11,9,12),(13,14,15,16,17,18)], [(1,14,12,6,18,10),(2,17,8,5,15,9),(3,16,11),(4,13,7)]])
G:=TransitiveGroup(18,100);
(1 2)(3 4)(5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)
(1 4 6)(2 3 5)(7 12 8 10 9 11)(13 14 15 16 17 18)
(1 15 11 3 14 7)(2 18 8 4 17 10)(5 16 9 6 13 12)
G:=sub<Sym(18)| (1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18), (1,4,6)(2,3,5)(7,12,8,10,9,11)(13,14,15,16,17,18), (1,15,11,3,14,7)(2,18,8,4,17,10)(5,16,9,6,13,12)>;
G:=Group( (1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18), (1,4,6)(2,3,5)(7,12,8,10,9,11)(13,14,15,16,17,18), (1,15,11,3,14,7)(2,18,8,4,17,10)(5,16,9,6,13,12) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18)], [(1,4,6),(2,3,5),(7,12,8,10,9,11),(13,14,15,16,17,18)], [(1,15,11,3,14,7),(2,18,8,4,17,10),(5,16,9,6,13,12)]])
G:=TransitiveGroup(18,102);
C62⋊C6 is a maximal subgroup of
C62⋊5D6
C62⋊C6 is a maximal quotient of C6.(S3×A4) Q8⋊He3⋊C2 C62⋊4C12
Matrix representation of C62⋊C6 ►in GL6(ℤ)
-1 | -1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
G:=sub<GL(6,Integers())| [-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,-1,0,0,0,0,1,0],[0,0,1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1,1,-1,0,0,0,0,0,-1,0,0,0,0] >;
C62⋊C6 in GAP, Magma, Sage, TeX
C_6^2\rtimes C_6
% in TeX
G:=Group("C6^2:C6");
// GroupNames label
G:=SmallGroup(216,99);
// by ID
G=gap.SmallGroup(216,99);
# by ID
G:=PCGroup([6,-2,-3,-2,2,-3,-3,170,81,1444,1450,5189]);
// Polycyclic
G:=Group<a,b,c|a^6=b^6=c^6=1,a*b=b*a,c*a*c^-1=a^-1*b^-1,c*b*c^-1=a^3*b^2>;
// generators/relations
Export